A New Compound Lomax Model: Properties, Copulas, Modeling and Risk Analysis Utilizing the Negatively Skewed Insurance Claims Data

نویسندگان

چکیده

Analyzing the future values of anticipated claims is essential in order for insurance companies to avoid major losses caused by prospective claims. This study proposes a novel three-parameter compound Lomax extension. The new density can be "monotonically declining", "symmetric", "bimodal-asymmetric", "asymmetric with right tail", wide peak" or left tail". hazard rate take following shapes: "J-shape", "bathtub (U-shape)", "upside down-increasing", "decreasing-constant", and down-increasing". We use some common copulas, including Farlie-Gumbel-Morgenstern copula, Clayton modified Renyi's copula Ali-Mikhail-Haq present bivariate quasi-Poisson generalized Weibull distributions mathematical modelling. Relevant properties are determined, mean waiting time, deviation, raw incomplete moments, residual life moments reversed life. Two actual data sets examined demonstrate unique extension's usefulness. model provides lowest statistic testing based on two real sets. risk exposure under characterized using five important indicators: value-at-risk, tail variance, tail-value-at-risk, mean-variance, excess loss function. For model, these indicators calculated. In accordance separate indicators, employed analysis. choose focus examining primary since they have straightforward only one peak. All addressed numerical graphical assessment

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multilevel Modeling of Insurance Claims Using Copulas

In property and casualty insurance, claims management is featured with modeling of semicontinuous insurance cost associated with individual risk transfer. This practice is further complicated by the multilevel structure of the insurance claims data, where a contract often contains a group of policyholders, each policyholder is insured under multiple types of coverage, and the contract is repeat...

متن کامل

a study on insurer solvency by panel data model: the case of iranian insurance market

the aim of this thesis is an approach for assessing insurer’s solvency for iranian insurance companies. we use of economic data with both time series and cross-sectional variation, thus by using the panel data model will survey the insurer solvency.

A Lognormal Model for Insurance Claims Data

• In the insurance area, especially based on observations of the number of claims, N(w), corresponding to an exposure w, and on observations of the total amount of claims incurred, Y (w), the risk theory arises to quantify risks and to fit models of pricing and insurance company ruin. However, the main problem is the complexity to obtain the distribution function of Y (w) and, consequently, the...

متن کامل

data mining rules and classification methods in insurance: the case of collision insurance

assigning premium to the insurance contract in iran mostly has based on some old rules have been authorized by government, in such a situation predicting premium by analyzing database and it’s characteristics will be definitely such a big mistake. therefore the most beneficial information one can gathered from these data is the amount of loss happens during one contract to predicting insurance ...

15 صفحه اول

the clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance

با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pakistan Journal of Statistics and Operation Research

سال: 2022

ISSN: ['1816-2711', '2220-5810']

DOI: https://doi.org/10.18187/pjsor.v18i3.3652